J K SHAH CLASSES

CLASS ROOM TEST

Marks : 40		SYJC FEB' 19 Subject : Maths – II Regression, Random Variable	Duration : 1.5 Hours. Set – A SOLUTION			
			Set - A SOLUTION			
Q.1.	Solve any Three :	(2 Marks each)	(06)			
1.		= 28, b _{YX} = - 1.5 and b _{xy} = - 0.2				
		icient between X and Y :				
	$r = \pm \sqrt{b_{xx} b_{xy}}$					
	1					
	= <u>+</u> $\sqrt{(-1.5)(-1.5)}$	0.2)				
	= <u>+</u> √0.3					
	∴r = -0.5477	(\because b _{yx} and b _{xy} are negative)				
2.	Given : \overline{x} = 199, \overline{y}	= 94, $\sum (x_i - \overline{x})^2 = 1298$, $\sum (y_i - \overline{y})^2 = 600$, $\sum (x_i - \overline{y})^2 = 600$	$(\overline{x})(y_i - \overline{y}) = -262$			
	The line of regress					
	-					
	$b_{yx} = \frac{\sum (x - \overline{x}) \sum}{\sum (x_i - \overline{x})}$	$-\frac{2}{2}$				
	$\sum (x_i -$	x)				
	$=\frac{-262}{1222}$					
	= 1298					
	= -0.2018					
	Now, y - $\overline{y} = b_{yx} (x$	- x)				
	∴ y – 92 = 0.201	,				
	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
	∴y = 134.1	582 – 0.2018x				
-						
3.		= 90, σ_x = 3, σ_y = 12, r = 0.8				
(i)	Regression equation					
	$b_{yx} = r \cdot \frac{1}{2}$ $\therefore b_{yx} = 0.8$	σ _y				
		σ _x				
	$\therefore b_{vx} = 0.8$	$3 \times \frac{12}{2} = 3.2$				
	Now, $y - \overline{y} = b_{yx} (x)$	- x)				
	∴ y – 90 = 3.2 (x –	10)				
	∴ y = 3.2x – 32 + 9	0				
	∴ y = 3.2x + 58					
/::)	$\therefore y = 58 + 3.2x$	on of V on V :				
(ii)	Regression equat					
	$b_{xy} = r \cdot \cdot$					
	$\therefore b_{xy} = 0.8$	$3 \times \frac{3}{12} = 0.2$				
	Now, $x - \overline{x} = b_{xy} (y)$	$\mathbf{y} - \mathbf{\overline{y}}$				
	∴ x – 10 = 0.2 (y –	90)				
	∴ x = 0.2y – 18 + 1	0				
		1				

$$\therefore x = 0.2y - 8$$

$$\therefore x = -8 + 0.2y$$

4. $b_{yx} + b_{xy} = 1.30, r = 0.75$ $\frac{b_{yx} + b_{xy}}{2} = \frac{1.30}{2}, r = 0.75$ $\therefore \frac{b_{yx} + b_{xy}}{2} < r$

Hence, the data is inconsistent.

5. We know that the co-ordinates of point of intersection of the two lines are \overline{x} and \overline{y} , the means of X and Y.

The regression equation are 3x + 2y - 26= 0= 0 6x + y - 31and Solving these equations simultaneously, we get 6x + 4y - 52 = 06x + y - 31 = 0- + 3y - 21 = 0 3x = 21 ... i.e. y = 7 and x = 4hence, the means of X and Y are $\overline{x} = 4$ and $\overline{y} = 7$.

Q.2. Solve any Four : (3 Marks each)

1. Here, the regression lines are specified. So, $b_{YX} = \frac{4}{3}$ and $b_{XY} = \frac{1}{3}$

$$\therefore r^{2} = b_{YX} \cdot b_{XY} = \frac{4}{3} \cdot \frac{1}{3} = \frac{4}{9}$$

$$\therefore r = +\frac{2}{3} \qquad \dots (\because b_{yx} \text{ and } b_{xy} \text{ are positive})$$

You know that

$$b_{YX} = r \cdot \frac{\sigma_Y}{\sigma_X}$$

$$\therefore \frac{4}{3} = \frac{2}{3} \cdot \frac{\sigma_Y}{2}$$

$$\therefore \sigma_Y = 4$$

$$\therefore \sigma_y^2 = 16$$

2. Here, we need to find line of regression of Y on X, which is given as $Y = a + b_{YX} X$. Where $b_{YX} = \frac{\text{cov}(X, Y)}{2}$

$$e b_{YX} = \frac{\overline{(x_i - \overline{x})}}{\sigma_X^2}$$
$$= \frac{\sum (x_i - \overline{x})(x_i - \overline{y})}{\frac{n}{\sigma_X^2}}$$
$$= \frac{\frac{1220}{10}}{\frac{130}{130}}$$

(12)

JK SHAH CLASSES

= 0.9384 $= y - b_{YX} x$ and a = 142 - (0.9384) 53 = 92.2615 Therefore, regression equation of Y on X is Y = 92.2615 + 0.9384XNow, the estimate of blood pressure of woman with age 47 years is = 92.2615 + 0.9384 x 47 Y = 136.3692Given : n = 8, \bar{x} = 20, \bar{y} = 36, $\sum (x_i - \bar{x})(y_i - \bar{y}) = 120$, $\sigma_x = 2$, $\sigma_y = 3$ 3. $b_{yx} = \frac{Cov(x, y)}{\sigma_v^2}$ Now, Cov (x, y) = $\frac{\sum (x_i - \overline{x})(y_1 - \overline{y})}{n}$ $=\frac{120}{8}=15$ $\therefore b_{yx} = \frac{15}{(2)^2} = \frac{15}{4}$ = 3.75Line of regression of Y on X : $y - \overline{y} = b_{yx} \left(x - \overline{x} \right)$ \therefore y - 36 = 3.75 (x - 20) \therefore y = 3.75x - 75 + 36 \therefore y = 3.75x - 39 x = 53, y = 28, $b_{yx} = -1.5$, $b_{xy} = -0.2$ 4. Using regression equation of Y on X, we estimate Y when X = 50. Now, $y - \overline{y} = b_{yx} \left(x - \overline{x} \right)$ \therefore y - 28 = - 1.5(x - 53) \therefore y = -1.5x + 79.5 + 28 ∴ y = - 1.5x + 107.5 Estimate of Y when X = 50 : Put x = 50 in y = -1.5x + 107.5 \therefore y = - 1.5 x 50 + 107.5 ∴ y = - 75 + 107.5 ∴ y = 32.5 Given : $b_{yx} = -0.75$, $b_{xy} = -1.1$, r = ?5. **Correlation coefficient :** $r = \pm \sqrt{b_{yx} \cdot b_{xy}}$ \therefore r = $\pm \sqrt{(-0.75) \times (-1.1)}$ \therefore r = + $\sqrt{0.825}$ \therefore r = -0.9082 (\therefore b_{yx} and b_{xy} are negative) Q.3. Solve any One : (4 Marks each)

1. Given : n = 7, $\sum x_i = 105$, $\sum y_i = 409$, $\sum x_i^2 = 1681$, $\sum y_i^2 = 39350$, $\sum x_i y_i = 8075$

(04)

	$\overline{x} = \frac{\sum x_i}{n} = \frac{105}{7} = 15, \ \overline{y} = \frac{\sum y_i}{n} = \frac{409}{7} = 58.428$		
	Regression coefficient of Y on X :		
	$b_{yx} = \frac{\frac{\sum x_i y_i}{n} - (\overline{x})(\overline{y})}{\frac{\sum x_i^2}{n} - (\overline{x})^2}$		
	$= \frac{\frac{8075}{7} - 15 \times 58.428}{\frac{1681}{7} - (15)^2}$		
	$= \frac{1153.571 - 876.42}{240.143 - 225}$		
	$=\frac{277.151}{15.143}$ =18.3023		
	Regression equation of Y on X :		
	$y - \overline{y} = b_{yx} (x - \overline{x})$		
	$\therefore y - 58.428 = 18.3023 (x - 15)$ $\therefore y = 18.3023x - 274.5345 + 58.428$ $\therefore y = 18.3023x - 216.1065$ $\therefore y = -216.1065 + 18.3023x.$		
2. (i)	Given : $10x - 4y = 80$, $10y - 9x = -40$ \overline{x} and \overline{y} :		
	10x - 4y= 80 (1) $-9x + 10y$ = -40 (2)Multiplying equation (1) by 9 and equation (2) by 10 and then adding them, we get $90x - 36y$ = 720 (1)		
	-90x + 100y = -420 (2)		
	$\therefore 64y = 320$ 320		
	$\therefore y = \frac{320}{64} = 5$		
	Put y = 5 in equation (1), we get $10x - 4(5) = 80$		
	$\therefore 10x = 80 + 20$		
	$\therefore x = \frac{100}{10} = 10$		
	Hence, $\overline{x} = 10$, $\overline{y} = 5$		
(ii)	b _{yx} and b _{xy} Let regression equation of X on Y be 10x - 4y = 80 ∴ $10x = 4y + 80$		
	$\therefore x = \frac{4}{10}y + 8$		
	∴ $b_{xy} = 0.4$ And another equation $10y - 9x = -40$ be the regression equation of Y on X. ∴ $10y = 9x - 40$		
	-		

$$\therefore y = \frac{9}{10}x - 4$$

$$\therefore b_{yx} = \frac{9}{10} = 0.9$$

Hence, $b_{yx} = 0.9$ and $b_{xy} = 0.4$

(iii) Coefficient of correlation r :

r =
$$\pm \sqrt{b_{yx} \cdot b_{xy}}$$

= $\pm \sqrt{0.9 \times 0.4}$
= $\pm \sqrt{0.36}$
∴ r = 0.6 (∵ b_{yx} and b_{xy} are positive)

(iv) V(X) if V(Y) = 36 $\therefore \sigma_y = 6$:

Now,
$$b_{yx} = r \cdot \frac{\sigma_y}{\sigma_x}$$

 $\therefore 0.9 = 0.6 \times \frac{6}{\sigma_x}$
 $\therefore \frac{0.9}{0.6 \times 6} = \frac{1}{\sigma_x}$
 $\therefore \frac{1}{4} = \frac{1}{\sigma_x}$
 $\therefore \sigma_x = 4$
 $\therefore V(X) = \sigma_x^2 = (4)^2 = 16$

3. Given : 3x + 2y - 26 = 0, 6x + y - 31 = 0(i) Means of X and Y : ... (1) 3x + 2y – 26 = 0 6x + y – 31 = 0 ... (2) Multiplying equation (2) by 2 and subtracting it from the equation (1), we get 3x + 2y - 26 = 0... (1) 12x + 2y - 62 = 0... (2) $\therefore -9x + 36 = 0$ ∴ 9x = 36 $\therefore x = \frac{36}{9} = 4$ Put x = 4 in equation (1), \therefore 3(4) + 2y - 26 = 0 $\therefore 2y + 12 - 26 = 0$ ∴ 2y = 14 ∴y = 7 Hence, $\overline{x} = 4$, $\overline{y} = 7$ (ii) Correlation coefficient between X and Y : Let 3x + 2y - 26 = 0 be the regression equation of Y on X. $\therefore 2y = -3x + 26$ $\therefore y = -\frac{3}{2}x + 13$ $\therefore b_{yx} = -\frac{3}{2}$ (:: it is coefficient of x)

J K SHAH CLASSES

(04)

and the other equation 6x + y - 31=0 be the regression equation of X and Y. $\therefore 6x = -y + 31$ $\therefore x = -\frac{1}{6}y + \frac{31}{6}$ $\therefore b_{xy} = -\frac{1}{6}$ (\because it is coefficient of y) Now, r = $\pm \sqrt{b_{yx} \cdot b_{xy}}$ $= \pm \sqrt{\left(-\frac{3}{2}\right)x\left(-\frac{1}{6}\right)} = \pm \sqrt{\frac{1}{4}}$ $= \pm \frac{1}{2}$ \therefore r = -0.5 (\because b_{yx} and b_{xy} are negative)

(iii) Estimate of Y for X = 2: Regression line of Y on X is, $y - \overline{y} = b_{yx} (x - \overline{x})$

$$\therefore y - 7 = -\frac{3}{2}(x - 4)$$

$$\therefore y = -\frac{3}{2}x + 6 + 7$$

$$\therefore y = -\frac{3}{2}x + 13$$

Put x = 2 in y = $-\frac{3}{2}x + 13$

$$\therefore y = -\frac{3}{2} \times 2 + 13$$

$$\therefore y = -3 + 13$$

$$\therefore y = 10$$

(iv) $V(Y) = 36 = \sigma_y^2$ $\therefore \sigma_y = 6, \text{ Var } (X) = ?$ Now, $b_{yx} = r. \frac{\sigma_y}{\sigma_y}$ $\therefore -\frac{3}{2} = -\frac{1}{2} \times \frac{6}{\sigma_x}$ $\therefore 3 = \frac{6}{\sigma_x}$ $\therefore \sigma_x = \frac{6}{3} = 2$ $\therefore \text{ Var } (X) = \sigma_x^2 = 4.$

Q.4. Attempt any Two : (2 Marks each)

1. Here, we define r.v. X = number of points appearing on the uppermost face of a fair die. X can take values 1, 2, 3, 4, 5, 6.

J K SHAH CLASSES

CLASS ROOM TEST

Since die is fair, each number has equal probability distribution of X is as shown in the following table.

X = x	1	2	3	4	5	6
P[X = x]	1	1	1	1	1	1
	6	6	6	6	6	6

2. Define X = number of defective batteries selected by the person.

 \therefore Range set of X = {0, 1, 2}. The p.m.f. of X is as follows :

$$P (X = 0) = \frac{{}^{3}C_{0} \times {}^{5}C_{2}}{{}^{8}C_{2}} = \frac{10}{28}$$
$$P (X = 1) = \frac{{}^{3}C_{1} \times {}^{5}C_{1}}{{}^{8}C_{2}} = \frac{15}{28}$$
$$P (X = 2) = \frac{{}^{3}C_{2} \times {}^{5}C_{0}}{{}^{2}C_{2}} = \frac{3}{28}$$

Thus, the probability distribution of X is :

,						
	X = x	0	1	2		
	P[X = x]	10	15	3		
		28	28	28		

3. 3 fair coins are tossed simultaneously.

s = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

1

 \therefore total outcomes n = 8

X = the number of heads

÷

...

...

P (x = 0) = P {TTT} =
$$\frac{1}{8}$$

P (x = 1) = P {HTT, THT, TTH} = $\frac{3}{8}$
P (x = 2) = P {HHT, HTH, THH} = $\frac{3}{8}$
P (x = 3) = P {HHH} = $\frac{1}{8}$

Hence, the probability distribution of X is as shown in the following table :

X = x	0	1	2	3
P(X = x)	1	3	3	1
	8	8	8	8

4. Given
$$f(x) = \frac{kx^2(1-x), 0 < x < 1}{0, \text{ otherwise}}$$

Here, f(x) is a pdf of r.v. X

 $\therefore \qquad \int_{0}^{1} kx^{2}(1-x) dx = 1$ $\therefore \qquad \int_{0}^{1} x^{2} dx - \int_{0}^{1} x^{3} dx = \frac{1}{k}$ $\therefore \qquad \left[\frac{x^{3}}{3}\right]_{0}^{1} - \left[\frac{x^{4}}{4}\right]_{0}^{1} = \frac{1}{k}$ $\therefore \qquad \left(\frac{1}{3} - 0\right) - \left(\frac{1}{4} - 0\right) = \frac{1}{k}$ $\therefore \qquad \frac{1}{3} - \frac{1}{4} = \frac{1}{k}$

CLASS ROOM TEST

J K SHAH CLASSES

 $\frac{4-3}{12} = \frac{1}{k}$... k = 12 *.*. Hence, k = 12

Q.5. Attempt any Four : (3 Marks each)1. Given pdf of r.v. X is

f(**x**)

$$= \frac{k}{\sqrt{x}}, 0 < x < 4$$
$$= 0, \text{ elsewhere}$$
We know that,

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

$$\therefore \int_{0}^{4} \frac{k}{\sqrt{x}} dx = 1$$

$$\therefore k \int_{0}^{4} x^{-\frac{1}{2}} dx = 1$$

$$\therefore k \left[\frac{x^{\frac{1}{2}}}{1/2} \right]_{0}^{4} = 1$$

$$\therefore k \left[\frac{4^{\frac{1}{2}}}{1/2} - 0 \right] = 1$$

$$\therefore k \times 4 = 1$$

$$\therefore k = \frac{1}{4}$$

Let X = No. of defective bulbs in a sample of 5 bulbs 2.

$$P[X \ge 1] = 1 - P[X < 1]$$

8

(12)

$$= 1 - P(0) = 1 - 1 \times \frac{1024}{3125} = 1 - 0.32768 = 0.67232. Hence, the probability that at least one bulb is defective in a sample of 5 bulbs is 0.67232. Hence, the probability that at least one bulb is defective in a sample of 5 bulbs is 0.67232.
3. X ~ P(m = 5), e4 = 0.0067 + \frac{5^{\times}}{xl} = 0.0067 \times \frac{5^{\times}}{xl} = 0.0067 \times \frac{5^{\times}}{xl} = 0.0067 \times \frac{5^{\times}}{xl} = 0.0067 \times \frac{5^{\times}}{120} = 20.9375} = 0.1745 = 0.0067 \times \frac{3125}{120} = 20.9375} = 0.1745$$

$$\therefore P[X = 5] = p(5) = 0.0067 \times \frac{5^{\times}}{120} = 0.1745 = 0.0067 \times \frac{5^{\times}}{120} = 1 - [P(0) + P(1)] = 1 - [p(0) + p(1)] = 1 - [0.0067 \times \frac{5^{\times}}{0!} + 0.0067 \times \frac{5^{\times}}{1!}] = 1 - 0.0067 \times \frac{6}{0!} = 1 - 0.0067 \times \frac{5^{\times}}{1!} = 1 - 0.0067 \times \frac{6}{1!} = 0.0067 \times \frac{6}{1!} = 1 - 0.0067 \times \frac{6}{1!} = 0.0067 \times \frac{6}{1!} = 1 - 0.0067 \times \frac{6}{1!} = 1 - 0.0067 \times \frac{6}{1!} = 0 \times \frac$$

P(x) =
$$\frac{e^{-2}2^{x}}{x!}$$
, $e^{-2} = 0.1353$
∴ p(x) = 0.1353 × $\frac{2^{x}}{x!}$
∴ P[X = 0] = p(0) = 0.1353 × $\frac{2^{0}}{0!}$
∴ P[X = 0] = 0.1353

5. Let X = No. of days it rains in a week
p = Probability that it rains

$$= \frac{12}{30} = \frac{2}{5}$$

$$\therefore q = 1 - p = 1 - \frac{2}{5} = \frac{3}{5}$$
Given : n = 7 (No. of days in a week)

$$\therefore X \sim B \qquad \left(7, \frac{2}{5}\right)$$
Hence, p(x) = ${}^{n}C_{x}p^{x}q^{n-x}$

$$\therefore p(x) = {}^{7}C_{x}\left(\frac{2}{5}\right)^{x}\left(\frac{3}{5}\right)^{7-x}$$
P [It rains on exactly 3 days of the week] i.e. P[X = 3] :

$$\therefore P[X = 3] = p(3) = {}^{7}C_{3}\left(\frac{2}{5}\right)^{3}\left(\frac{3}{5}\right)^{7-3}$$

$$= \frac{7 \times 6 \times 5}{3 \times 2 \times 1} \times \frac{8}{125} \times \frac{81}{625}$$

$$= \frac{35 \times 8 \times 81}{125 \times 625}$$

$$= \frac{22680}{78125} = 0.290304$$

∴ P[X = 3] = 0.290304

Hence, the probability that it rains on exactly 3 days of week is 0.290304.

6. Given,
$$X \sim B(n, p)$$

 $\therefore p(x) = {}^{n}C_{x}p^{x}q^{n-x}$
Given : $n = 5$, $p(1) = 0.4096$, $p(2) = 0.2048$, $p = ?$
Now, $p(x) = {}^{5}C_{x}p^{x}q^{n-x}$
 $\therefore p(1) = {}^{5}C_{1}p^{1}q^{4}$
 $\therefore p(1) = 5pq^{4}$
and $p(2) = {}^{5}C_{2}p^{2}q^{3}$
 $\therefore p(2) = 10. p^{2}q^{3}$
Now, $\frac{P(X=1)}{P(X=2)} = \frac{P(1)}{P(2)} = \frac{5pq^{4}}{10p^{2}q^{3}}$
 $\therefore \frac{0.4096}{0.2048} = \frac{q}{2p}$
 $\therefore 2 = \frac{q}{2p}$
 $\therefore 4p = q$
 $\therefore 4p = 1 - p$

 $\therefore 5p = 1$ $\therefore p = \frac{1}{5}$

Hence, the probability of success is $\frac{1}{5}$.

Q.6. Attempt any One : (4 Marks each)

1. Given that,

$$f(\mathbf{x}) = \frac{1}{\mathbf{x}^2}, 1 < \mathbf{x} > \infty$$

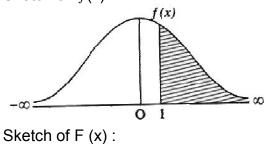
= 0, otherwise. Cdf of a continuous r.v. X is given by

$$F(x) = \int_{-\infty}^{x} f(x) dx$$

Now range of X starts at 1

$$\therefore \quad F(x) = \int_{1}^{x} f(x) dx$$
$$= \int_{1}^{x} \frac{1}{x^{2}} dx$$
$$= \left[-\frac{1}{x} \right]_{1}^{x}$$
$$= -\frac{1}{x} - (-1)$$
$$= 1 - \frac{1}{x}$$

Hence, cdf of X, $F(x) = 1 - \frac{1}{x}$ Sketch of f(x):



Let X = No. of workers suffering from occupational disease.
 p = Probability that worker suffering from the disease

= 25% =
$$\frac{25}{100} = \frac{1}{4}$$

∴ q = 1 - p = 1 - $\frac{1}{4} = \frac{3}{4}$
Given : n = 6 (No. Of workmen)

(12)

$$\begin{array}{ll} \therefore X \sim B & \left(6, \frac{1}{4}\right) \\ \text{Now, } p(x) = {}^{n}C_{x}p^{x}q^{n \cdot x} \\ \therefore p(x) = {}^{6}C_{x}\left(\frac{1}{4}\right)^{x}\left(\frac{3}{4}\right)^{6 \cdot x} \\ P \text{ [Four or more workmen] i.e. } P[X \geq 4] : \\ \therefore P[X \geq 4] = P(4) + P(5) + P(6) \\ &= p(4) + p(5) + p(6) \\ &= {}^{6}C_{4}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{2} + {}^{6}C_{5}\left(\frac{1}{4}\right)^{5}\left(\frac{3}{4}\right)^{1} + {}^{6}C_{6}\left(\frac{1}{4}\right)^{6}\left(\frac{3}{4}\right)^{0} \\ &= \frac{6 \times 5}{2 \times 1} \times \frac{1}{256} \times \frac{9}{16} + 6 \times \frac{1}{1024} \times \frac{3}{4} + 1 \times \frac{1}{4096} \times 11 \\ &= \frac{15 \times 9}{4096} + \frac{18}{4096} + \frac{1}{4096} \\ &= \frac{135 + 18 + 1}{4096} \\ &= \frac{154}{4096} = 0.0376 \end{array}$$

Hence, the probability that 4 or more workmen will contact the disease is 0.0376.

3. X = No. of accidents

10 accidents take place in 50 days is given.

$$\therefore \qquad \text{average no. of accidents per day m} = \frac{10}{50} = 0.2$$

$$\therefore \quad X \sim P(m = 0.2); e^{-m} = 0.8187$$
Hence, $p(x) = \frac{e^{-m}m^{x}}{x!}$

$$\therefore \frac{e^{-0.2}(0.2)^{x}}{x!} = 0.8187 \times \frac{(0.2)^{x}}{x!}$$

$$P[X \ge 3] = 1 - P[X = 0] + P(X = 1) + P(X = 2)]$$

$$= 1 - [p(0) + p(1) + p(2)]$$

$$= 1 - \left[0.8187 \times \frac{(0.2)^{0}}{0!} + 0.8187 \times \frac{(0.2)^{x}}{1!} + 0.8187 \times \frac{(0.2)^{2}}{2!} \right]$$

$$= 1 - \left[0.8187 \left(1 + 0.2 + \frac{0.04}{2} \right) \right]$$

$$= 1 - [0.8187(1.2 + 0.02)]$$

$$= 1 - [0.8187 \times 1.22]$$

$$= 1 - 0.9988$$

$$= 0.0012$$

Hence, the probability that there are three or more accidents per day is 0.0012.

##